References

[1]

Michel Caffarel, Thomas Applencourt, Emmanuel Giner, and Anthony Scemama. Communication: toward an improved control of the fixed-node error in quantum monte carlo: the case of the water molecule. The Journal of Chemical Physics, 144(15):151103, apr 2016. URL: https://doi.org/10.1063%2F1.4947093, doi:10.1063/1.4947093.

[2]

Michel Caffarel, Thomas Applencourt, Emmanuel Giner, and Anthony Scemama. Using cipsi nodes in diffusion monte carlo. In ACS Symposium Series, pages 15–46. American Chemical Society, jan 2016. URL: https://doi.org/10.1021%2Fbk-2016-1234.ch002, doi:10.1021/bk-2016-1234.ch002.

[3]

Pierre-François Loos, Anthony Scemama, Aymeric Blondel, Yann Garniron, Michel Caffarel, and Denis Jacquemin. A mountaineering strategy to excited states: highly accurate reference energies and benchmarks. Journal of Chemical Theory and Computation, 14(8):4360–4379, jul 2018. URL: https://doi.org/10.1021%2Facs.jctc.8b00406, doi:10.1021/acs.jctc.8b00406.

[4]

Anthony Scemama, Yann Garniron, Michel Caffarel, and Pierre-François Loos. Deterministic construction of nodal surfaces within quantum monte carlo: the case of FeS. Journal of Chemical Theory and Computation, 14(3):1395–1402, jan 2018. URL: https://doi.org/10.1021%2Facs.jctc.7b01250, doi:10.1021/acs.jctc.7b01250.

[5]

Monika Dash, Saverio Moroni, Anthony Scemama, and Claudia Filippi. Perturbatively selected configuration-interaction wave functions for efficient geometry optimization in quantum monte carlo. Journal of Chemical Theory and Computation, 14(8):4176–4182, jun 2018. URL: https://doi.org/10.1021%2Facs.jctc.8b00393, doi:10.1021/acs.jctc.8b00393.

[6]

Yann Garniron, Anthony Scemama, Pierre-François Loos, and Michel Caffarel. Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory. The Journal of Chemical Physics, 147(3):034101, jul 2017. URL: https://doi.org/10.1063%2F1.4992127, doi:10.1063/1.4992127.

[7]

Emmanuel Giner and Celestino Angeli. Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal. J. Chem. Phys., 144(10):104104, Mar 2016. doi:10.1063/1.4943187.

[8]

Emmanuel Giner, Lorenzo Tenti, Celestino Angeli, and Nicolas Ferré. Computation of the isotropic hyperfine coupling constant: efficiency and insights from a new approach based on wave function theory. Journal of Chemical Theory and Computation, 13(2):475–487, 2017. PMID: 28094936. URL: https://doi.org/10.1021/acs.jctc.6b00827, arXiv:https://doi.org/10.1021/acs.jctc.6b00827, doi:10.1021/acs.jctc.6b00827.

[9]

Emmanuel Giner, Celestino Angeli, Yann Garniron, Anthony Scemama, and Jean-Paul Malrieu. A jeziorski-monkhorst fully uncontracted multi-reference perturbative treatment. i. principles, second-order versions, and tests on ground state potential energy curves. The Journal of Chemical Physics, 146(22):224108, jun 2017. URL: https://doi.org/10.1063%2F1.4984616, doi:10.1063/1.4984616.

[10]

E. Giner, C. Angeli, A. Scemama, and J.-P. Malrieu. Orthogonal valence bond hamiltonians incorporating dynamical correlation effects. Computational and Theoretical Chemistry, 1116:134–140, sep 2017. URL: https://doi.org/10.1016%2Fj.comptc.2017.03.001, doi:10.1016/j.comptc.2017.03.001.

[11]

E. Giner, G. David, A. Scemama, and J. P. Malrieu. A simple approach to the state-specific MR-CC using the intermediate hamiltonian formalism. The Journal of Chemical Physics, 144(6):064101, feb 2016. URL: https://doi.org/10.1063%2F1.4940781, doi:10.1063/1.4940781.

[12]

Yann Garniron, Emmanuel Giner, Jean-Paul Malrieu, and Anthony Scemama. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster. The Journal of Chemical Physics, 146(15):154107, apr 2017. URL: https://doi.org/10.1063%2F1.4980034, doi:10.1063/1.4980034.

[13]

Yann Garniron, Anthony Scemama, Emmanuel Giner, Michel Caffarel, and Pierre-François Loos. Selected configuration interaction dressed by perturbation. The Journal of Chemical Physics, 149(6):064103, aug 2018. URL: https://doi.org/10.1063%2F1.5044503, doi:10.1063/1.5044503.

[14]

Emmanuel Giner, Barthélemy Pradines, Anthony Ferté, Roland Assaraf, Andreas Savin, and Julien Toulouse. Curing basis-set convergence of wave-function theory using density-functional theory: a systematically improvable approach. The Journal of Chemical Physics, 149(19):194301, nov 2018. URL: https://doi.org/10.1063%2F1.5052714, doi:10.1063/1.5052714.

[15]

Laimutis Bytautas and Klaus Ruedenberg. A priori identification of configurational deadwood. Chemical Physics, 356(1-3):64–75, feb 2009. URL: https://doi.org/10.1016%2Fj.chemphys.2008.11.021, doi:10.1016/j.chemphys.2008.11.021.

[16]

James S.M. Anderson, Farnaz Heidar-Zadeh, and Paul W. Ayers. Breaking the curse of dimension for the electronic schrodinger equation with functional analysis. Computational and Theoretical Chemistry, 1142:66–77, oct 2018. URL: https://doi.org/10.1016%2Fj.comptc.2018.08.017, doi:10.1016/j.comptc.2018.08.017.

[17]

Charles F. Bender and Ernest R. Davidson. Studies in configuration interaction: the first-row diatomic hydrides. Phys. Rev., 183(1):23–30, jul 1969. URL: http://dx.doi.org/10.1103/PhysRev.183.23, doi:10.1103/physrev.183.23.

[18]

J. L. Whitten and Melvyn Hackmeyer. Configuration interaction studies of ground and excited states of polyatomic molecules. i. the CI formulation and studies of formaldehyde. The Journal of Chemical Physics, 51(12):5584–5596, dec 1969. URL: https://doi.org/10.1063%2F1.1671985, doi:10.1063/1.1671985.

[19]

B. Huron, J. P. Malrieu, and P. Rancurel. Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions. The Journal of Chemical Physics, 58(12):5745–5759, jun 1973. URL: https://doi.org/10.1063%2F1.1679199, doi:10.1063/1.1679199.

[20]

Peter J. Knowles and Nicholas C Handy. A new determinant-based full configuration interaction method. Chem. Phys. Letters, 111:315–321, 1984.

[21]

Stefano Evangelisti, Jean-Pierre Daudey, and Jean-Paul Malrieu. Convergence of an improved CIPSI algorithm. Chemical Physics, 75(1):91–102, feb 1983. URL: https://doi.org/10.1016%2F0301-0104%2883%2985011-3, doi:10.1016/0301-0104(83)85011-3.

[22]

Yann Garniron, Anthony Scemama, Pierre-François Loos, and Michel Caffarel. Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory. The Journal of Chemical Physics, 147(3):034101, jul 2017. URL: https://doi.org/10.1063%2F1.4992127, doi:10.1063/1.4992127.

[23]

Abdallah Ammar, Anthony Scemama, and Emmanuel Giner. Transcorrelated selected configuration interaction in a bi-orthonormal basis and with a cheap three-body correlation factor. J. Chem. Phys., September 2023. doi:10.1063/5.0163831.

[24]

Abdallah Ammar, Anthony Scemama, and Emmanuel Giner. Biorthonormal Orbital Optimization with a Cheap Core-Electron-Free Three-Body Correlation Factor for Quantum Monte Carlo and Transcorrelation. J. Chem. Theory Comput., 19(15):4883–4896, August 2023. doi:10.1021/acs.jctc.3c00257.

[25]

Yann Damour, Raúl Quintero-Monsebaiz, Michel Caffarel, Denis Jacquemin, Fábris Kossoski, Anthony Scemama, and Pierre-François Loos. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. J. Chem. Theory Comput., 19(1):221–234, January 2023. doi:10.1021/acs.jctc.2c01111.

[26]

Abdallah Ammar, Anthony Scemama, and Emmanuel Giner. Extension of selected configuration interaction for transcorrelated methods. J. Chem. Phys., October 2022. doi:10.1063/5.0115524.

[27]

Abdallah Ammar, Emmanuel Giner, and Anthony Scemama. Optimization of Large Determinant Expansions in Quantum Monte Carlo. J. Chem. Theory Comput., 18(9):5325–5336, September 2022. doi:10.1021/acs.jctc.2c00556.

[28]

Enzo Monino, Martial Boggio-Pasqua, Anthony Scemama, Denis Jacquemin, and Pierre-François Loos. Reference Energies for Cyclobutadiene: Automerization and Excited States. J. Phys. Chem. A, 126(28):4664–4679, July 2022. doi:10.1021/acs.jpca.2c02480.

[29]

Alice Cuzzocrea, Saverio Moroni, Anthony Scemama, and Claudia Filippi. Reference Excitation Energies of Increasingly Large Molecules: A QMC Study of Cyanine Dyes. J. Chem. Theory Comput., 18(2):1089–1095, February 2022. doi:10.1021/acs.jctc.1c01162.

[30]

Yann Damour, Mickaël Véril, Fábris Kossoski, Michel Caffarel, Denis Jacquemin, Anthony Scemama, and Pierre-François Loos. Accurate full configuration interaction correlation energy estimates for five- and six-membered rings. J. Chem. Phys., October 2021. doi:10.1063/5.0065314.

[31]

Mickaël Véril, Anthony Scemama, Michel Caffarel, Filippo Lipparini, Martial Boggio-Pasqua, Denis Jacquemin, and Pierre-François Loos. QUESTDB: A database of highly accurate excitation energies for the electronic structure community. WIREs Comput. Mol. Sci., 11(5):e1517, September 2021. doi:10.1002/wcms.1517.

[32]

Fábris Kossoski, Antoine Marie, Anthony Scemama, Michel Caffarel, and Pierre-François Loos. Excited States from State-Specific Orbital-Optimized Pair Coupled Cluster. J. Chem. Theory Comput., 17(8):4756–4768, August 2021. doi:10.1021/acs.jctc.1c00348.

[33]

Monika Dash, Saverio Moroni, Claudia Filippi, and Anthony Scemama. Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene. J. Chem. Theory Comput., 17(6):3426–3434, June 2021. doi:10.1021/acs.jctc.1c00212.

[34]

Pierre-François Loos, Filippo Lipparini, Martial Boggio-Pasqua, Anthony Scemama, and Denis Jacquemin. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. J. Chem. Theory Comput., 16(3):1711–1741, March 2020. doi:10.1021/acs.jctc.9b01216.

[35]

Pierre-François Loos, Barthélémy Pradines, Anthony Scemama, Emmanuel Giner, and Julien Toulouse. Density-Based Basis-Set Incompleteness Correction for GW Methods. J. Chem. Theory Comput., 16(2):1018–1028, February 2020. doi:10.1021/acs.jctc.9b01067.

[36]

Pierre-François Loos, Anthony Scemama, and Denis Jacquemin. The Quest for Highly Accurate Excitation Energies: A Computational Perspective. J. Phys. Chem. Lett., 11(6):2374–2383, March 2020. doi:10.1021/acs.jpclett.0c00014.

[37]

Emmanuel Giner, Anthony Scemama, Pierre-François Loos, and Julien Toulouse. A basis-set error correction based on density-functional theory for strongly correlated molecular systems. J. Chem. Phys., May 2020. doi:10.1063/5.0002892.

[38]

Pierre-François Loos, Anthony Scemama, Martial Boggio-Pasqua, and Denis Jacquemin. Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals. J. Chem. Theory Comput., 16(6):3720–3736, June 2020. doi:10.1021/acs.jctc.0c00227.

[39]

Anouar Benali, Kevin Gasperich, Kenneth D. Jordan, Thomas Applencourt, Ye Luo, M. Chandler Bennett, Jaron T. Krogel, Luke Shulenburger, Paul R. C. Kent, Pierre-François Loos, Anthony Scemama, and Michel Caffarel. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids—A case study in diamond. J. Chem. Phys., November 2020. doi:10.1063/5.0021036.

[40]

Anthony Scemama, Emmanuel Giner, Anouar Benali, and Pierre-François Loos. Taming the fixed-node error in diffusion Monte Carlo via range separation. J. Chem. Phys., November 2020. doi:10.1063/5.0026324.

[41]

Pierre-François Loos, Yann Damour, and Anthony Scemama. The performance of CIPSI on the ground state electronic energy of benzene. J. Chem. Phys., November 2020. doi:10.1063/5.0027617.

[42]

Pierre-François Loos, Barthélémy Pradines, Anthony Scemama, Julien Toulouse, and Emmanuel Giner. A Density-Based Basis-Set Correction for Wave Function Theory. J. Phys. Chem. Lett., 10(11):2931–2937, June 2019. doi:10.1021/acs.jpclett.9b01176.

[43]

Monika Dash, Jonas Feldt, Saverio Moroni, Anthony Scemama, and Claudia Filippi. Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries. J. Chem. Theory Comput., 15(9):4896–4906, September 2019. doi:10.1021/acs.jctc.9b00476.

[44]

Hugh G. A. Burton and Alex J. W. Thom. A General Approach for Multireference Ground and Excited States using Non-Orthogonal Configuration Interaction. arXiv, May 2019. URL: https://arxiv.org/abs/1905.02626, arXiv:1905.02626.

[45]

Emmanuel Giner, Anthony Scemama, Julien Toulouse, and Pierre-François Loos. Chemically accurate excitation energies with small basis sets. J. Chem. Phys., October 2019. doi:10.1063/1.5122976.

[46]

Yann Garniron, Thomas Applencourt, Kevin Gasperich, Anouar Benali, Anthony Ferte, Julien Paquier, Bartélémy Pradines, Roland Assaraf, Peter Reinhardt, Julien Toulouse, Pierrette Barbaresco, Nicolas Renon, Gregoire David, Jean-Paul Malrieu, Mickael Veril, Michel Caffarel, Pierre-Francois Loos, Emmanuel Giner, and Anthony Scemama. Quantum package 2.0: an open-source determinant-driven suite of programs. Journal of Chemical Theory and Computation, may 2019. URL: https://doi.org/10.1021%2Facs.jctc.9b00176, doi:10.1021/acs.jctc.9b00176.

[47]

Anthony Scemama, Michel Caffarel, Anouar Benali, Denis Jacquemin, and Pierre-François Loos. Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion monte carlo. Results in Chemistry, pages 100002, may 2019. URL: https://doi.org/10.1016%2Fj.rechem.2019.100002, doi:10.1016/j.rechem.2019.100002.

[48]

Thomas Applencourt, Kevin Gasperich, and Anthony Scemama. Spin adaptation with determinant-based selected configuration interaction. arXiv, Dec 2018. URL: https://arxiv.org/abs/1812.06902, arXiv:1812.06902.

[49]

Pierre-François Loos, Martial Boggio-Pasqua, Anthony Scemama, Michel Caffarel, and Denis Jacquemin. Reference Energies for Double Excitations. J. Chem. Theory Comput., 15(3):1939–1956, Mar 2019. doi:10.1021/acs.jctc.8b01205.

[50]

Sergio Pineda Flores and Eric Neuscamman. Excited State Specific Multi-Slater Jastrow Wave Functions. J. Phys. Chem. A, 123(8):1487–1497, Feb 2019. doi:10.1021/acs.jpca.8b10671.

[51]

Yann Garniron. Development and parallel implementation of selected configuration interaction methods. PhD thesis, Université de Toulouse, February 2019. URL: https://doi.org/10.5281/zenodo.2558127, doi:10.5281/zenodo.2558127.

[52]

Emmanuel Giner, David Tew, Yann Garniron, and Ali Alavi. Interplay between electronic correlation and metal-ligand delocalization in the spectroscopy of transition metal compounds: case study on a series of planar Cu2+complexes. J. Chem. Theory Comput., Oct 2018. doi:10.1021/acs.jctc.8b00591.

[53]

Anthony Scemama, Anouar Benali, Denis Jacquemin, Michel Caffarel, and Pierre-François Loos. Excitation energies from diffusion monte carlo using selected configuration interaction nodes. The Journal of Chemical Physics, 149(3):034108, jul 2018. URL: https://doi.org/10.1063%2F1.5041327, doi:10.1063/1.5041327.

[54]

Emmanuel Giner, Anthony Scemama, and Michel Caffarel. Fixed-node diffusion monte carlo potential energy curve of the fluorine molecule f2 using selected configuration interaction trial wavefunctions. The Journal of Chemical Physics, 142(4):044115, jan 2015. URL: https://doi.org/10.1063%2F1.4905528, doi:10.1063/1.4905528.

[55]

Emmanuel Giner and Celestino Angeli. Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4]2- molecules: Some insights from wave function theory. J. Chem. Phys., 143(12):124305, Sep 2015. doi:10.1063/1.4931639.

[56]

A. Scemama, T. Applencourt, E. Giner, and M. Caffarel. Accurate nonrelativistic ground-state energies of 3d transition metal atoms. The Journal of Chemical Physics, 141(24):244110, dec 2014. URL: https://doi.org/10.1063%2F1.4903985, doi:10.1063/1.4903985.

[57]

Michel Caffarel, Emmanuel Giner, Anthony Scemama, and Alejandro Ram\'ırez-Sol\'ıs. Spin density distribution in open-shell transition metal systems: a comparative post-hartree-fock, density functional theory, and quantum monte carlo study of the cucl2 molecule. Journal of Chemical Theory and Computation, 10(12):5286–5296, nov 2014. URL: https://doi.org/10.1021%2Fct5004252, doi:10.1021/ct5004252.

[58]

Emmanuel Giner, Anthony Scemama, and Michel Caffarel. Using perturbatively selected configuration interaction in quantum monte carlo calculations. Canadian Journal of Chemistry, 91(9):879–885, sep 2013. URL: https://doi.org/10.1139%2Fcjc-2013-0017, doi:10.1139/cjc-2013-0017.

[59]

Anthony Scemama and Emmanuel Giner. An efficient implementation of Slater-Condon rules. arXiv, Nov 2013. URL: https://arxiv.org/abs/1311.6244, arXiv:1311.6244.

[60]

Sandeep Sharma, Adam A. Holmes, Guillaume Jeanmairet, Ali Alavi, and C. J. Umrigar. Semistochastic heat-bath configuration interaction method: selected configuration interaction with semistochastic perturbation theory. Journal of Chemical Theory and Computation, 13(4):1595–1604, mar 2017. URL: https://doi.org/10.1021%2Facs.jctc.6b01028, doi:10.1021/acs.jctc.6b01028.

[61]

Adam A. Holmes, Norm M. Tubman, and C. J. Umrigar. Heat-bath configuration interaction: an efficient selected configuration interaction algorithm inspired by heat-bath sampling. Journal of Chemical Theory and Computation, 12(8):3674–3680, aug 2016. URL: https://doi.org/10.1021%2Facs.jctc.6b00407, doi:10.1021/acs.jctc.6b00407.

[62]

George H. Booth, Alex J. W. Thom, and Ali Alavi. Fermion monte carlo without fixed nodes: a game of life, death, and annihilation in slater determinant space. The Journal of Chemical Physics, 131(5):054106, 2009. URL: https://doi.org/10.1063%2F1.3193710, doi:10.1063/1.3193710.

[63]

George H. Booth and Ali Alavi. Approaching chemical accuracy using full configuration-interaction quantum monte carlo: a study of ionization potentials. The Journal of Chemical Physics, 132(17):174104, may 2010. URL: https://doi.org/10.1063%2F1.3407895, doi:10.1063/1.3407895.

[64]

Deidre Cleland, George H. Booth, and Ali Alavi. Communications: survival of the fittest: accelerating convergence in full configuration-interaction quantum monte carlo. The Journal of Chemical Physics, 132(4):041103, jan 2010. URL: https://doi.org/10.1063%2F1.3302277, doi:10.1063/1.3302277.